

IEC 63409-3

Edition 1.0 2025-12

INTERNATIONAL STANDARD

**Photovoltaic power generating systems connection with the grid - Testing of power conversion equipment -
Part 3: Basic operations**

THIS PUBLICATION IS COPYRIGHT PROTECTED

Copyright © 2025 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

IEC Secretariat
3, rue de Varembé
CH-1211 Geneva 20
Switzerland

Tel.: +41 22 919 02 11
info@iec.ch
www.iec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigendum or an amendment might have been published.

IEC publications search -

webstore.iec.ch/advsearchform

The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee, ...). It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished

Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and once a month by email.

IEC Customer Service Centre - webstore.iec.ch/csc

If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: sales@iec.ch.

IEC Products & Services Portal - products.iec.ch

Discover our powerful search engine and read freely all the publications previews, graphical symbols and the glossary. With a subscription you will always have access to up to date content tailored to your needs.

Electropedia - www.electropedia.org

The world's leading online dictionary on electrotechnology, containing more than 22 500 terminological entries in English and French, with equivalent terms in 25 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

Warning! Make sure that you obtained this publication from an authorized distributor.

CONTENTS

FOREWORD	5
INTRODUCTION	7
1 Scope	8
2 Normative references	8
3 Terms and definitions	8
4 General requirements	11
4.1 General conditions for testing	11
4.1.1 Sequence of tests	11
4.1.2 Test equipment conditions	12
4.1.3 Manufacturer's stated tolerance	12
4.1.4 Required setting for EUT (equipment under test)	12
4.1.5 PCE firmware used during the test	12
4.1.6 Reporting the test results	12
4.2 Test setup	12
4.3 Parameters used in the tests	13
5 Test procedures	15
5.1 Steady state characteristics	15
5.1.1 General	15
5.1.2 Active power and reactive power	15
5.1.3 Operable voltage	16
5.1.4 Reactive power capability for low DC voltage	18
5.1.5 Operable frequency	19
5.1.6 Power factor	20
5.2 Transient-response characteristics	21
5.2.1 General	21
5.2.2 Active power control	21
5.2.3 Reactive power control	22
5.2.4 Grid voltage variation	23
5.2.5 Grid voltage phase angle variation	25
5.2.6 Grid voltage unbalance	26
5.2.7 Grid frequency variation	27
Annex A (normative) Summary of test items	29
Annex B (normative) Format for recording test results	32
B.1 General	32
B.2 Steady state characteristics	32
B.2.1 Active power and reactive power (see 5.1.2)	32
B.2.2 Operable voltage (see 5.1.3) and reactive power capability for low DC voltage (see 5.1.4)	33
B.2.3 Operable frequency (see 5.1.5)	34
B.2.4 Power factor (see 5.1.6)	34
B.3 Transient-response characteristics	35
B.3.1 Active power control (see 5.2.2)	35
B.3.2 Reactive power control (see 5.2.3)	36
B.3.3 Grid voltage variation (see 5.2.4)	37
B.3.4 Grid voltage phase angle variation (see 5.2.5)	38
B.3.5 Grid voltage unbalance (see 5.2.6)	39

B.3.6	Grid frequency variation (see 5.2.7)	40
Annex C (informative)	Examples of testing environments	42
C.1	General	42
C.2	Recommended specification of power supplies	44
C.3	Recommended specification of measuring instruments	45
Annex D (normative)	Supplemental information for settling time measurement	47
Annex E (normative)	Sign conventions for measurements of voltage, current and power	48
E.1	General	48
E.2	Reference polarity and direction	48
E.2.1	Reference polarity of voltage	48
E.2.2	Reference direction of current	48
E.2.3	Sign conventions for measurements of voltage, current and power	49
E.3	Reference frame of active and reactive power	49
E.4	Physical meanings of the power flows of generators in regional standards	54
Annex F (normative)	Grid voltage unbalance – test condition	56
F.1	General	56
F.2	Causes and definitions of unbalanced grid voltage	56
F.3	Test conditions	56
Annex G (informative)	Phase angle variation of grid voltage – alternative test setup	57
G.1	General	57
G.2	Alternative test setup and test procedure	57
Annex H (informative)	Fundamental principle of reactive power reduction with lower DC voltage	58
H.1	General	58
H.2	Controllability limit	58
Annex I (informative)	Grid support functions covered in IEC 63409 series	62
Annex J (informative)	Influence of MPPT control and PV simulator to the test results	63
J.1	General	63
J.2	DC power supply and MPPT control of PCE	63
J.2.1	DC power supply	63
J.2.2	MPPT control	63
J.3	Influence of the PV simulator	63
Bibliography	66
Figure 1 – Scopes of IEC 63409 series	7	
Figure 2 – Example of step response	11	
Figure 3 – Example of a test setup	13	
Figure 4 – Example operational parameters in P-Q capability curve of PCE in Producer Reference Frame (PRF)	15	
Figure 5 – Example of settling time measurement for grid voltage variation test	25	
Figure 6 – Example of settling time measurement for grid frequency variation	28	
Figure B.1 – P-Q capability curve showing active power and reactive power test results and power factor test results (example)	33	
Figure B.2 – Active power control test waveform example when active power setpoint was changed from 100 %	36	
Figure B.3 – Reactive power control test waveform example when reactive power setpoint was changed from 52,7 % to 0 %	37	

Figure B.4 – Grid voltage variation test waveform example when AC voltage was changed from 100 % to 110 %	38
Figure B.5 – Phase angle of grid voltage change test waveform example (10-degree step change was applied to AC voltages for illustrative purpose)	39
Figure B.6 – Grid voltage unbalance test waveform example when negative sequence voltage was applied to AC voltages	40
Figure B.7 – Grid frequency variation test waveform example when AC frequency was changed from 50 Hz to 50,5 Hz	41
Figure C.1 – Example of a testing environment	42
Figure D.1 – Example of settling time measurement for grid voltage variation in case the settled power is different from the original steady state	47
Figure E.1 – Reference polarity of voltage	48
Figure E.2 – Reference polarity of current	48
Figure E.3 – Reference polarity and direction for the measurements for DER	49
Figure E.4 – Reference polarity and direction for the measurements for load	49
Figure E.5 – Rotating vector voltage and current for load	50
Figure E.6 – Rotating vector voltage and current for DER	50
Figure E.7 – Complex power for load	52
Figure E.8 – Complex power for DER	52
Figure E.9 – Power quadrants for load	53
Figure E.10 – Power quadrants for DER	53
Figure G.1 – Configuration of an alternative test setup	57
Figure H.1 – Basic configuration of a power conversion equipment	58
Figure H.2 – EUT voltage and current vector diagram and operating point depicted in the PQ curve with sufficient U_{ac} (over-excited)	60
Figure H.3 – EUT voltage and current vector diagram and operating point depicted in the PQ curve with small U_{ac} (over-excited)	60
Figure H.4 – EUT voltage and current vector diagram and operating point depicted in the PQ curve with small U_{ac} (under-excited)	60
Figure H.5 – EUT voltage and current vector diagram and operating point depicted in the PQ curve during inflexion operating point (over-excited)	61
Figure J.1 – PV simulator characteristics examples	63
Figure J.2 – Active power control test waveform with constant DC voltage source and no MPPT	64
Figure J.3 – Active power control test waveform with PV simulator and MPPT enabled	65
Figure J.4 – Examples of operational point movement of a PCE during Active power control tests	65
Table 1 – Parameters defined for the tests	14
Table 2 – Test conditions for operable voltage test	18
Table 3 – Test conditions for operable frequency test	20
Table 4 – Test cases for grid voltage unbalance	27
Table A.1 – Test items for steady state characteristics (example)	29
Table A.2 – Test items for transient-response characteristics (example)	30
Table B.1 – Record of active power and reactive power test (example)	32
Table B.2 – Record of operable voltage test (example)	34

Table B.3 – Record of operable frequency test (example)	34
Table B.4 – Record of power factor test (example)	35
Table B.5 – Record of active power control test (example)	35
Table B.6 – Record of reactive power control test (example)	36
Table B.7 – Record of grid voltage variation test (example)	37
Table B.8 – Record of grid voltage phase angle variation test (example)	38
Table B.9 – Record of grid voltage unbalance test (example)	39
Table B.10 – Record of grid frequency variation test (example)	40
Table C.1 – Required functions for power supplies	43
Table C.2 – Electrical quantity measured with measuring instruments or devices	43
Table C.3 – Recommended specifications for power supplies	44
Table C.4 – Recommended specifications of power quality measurement	45
Table C.5 – Recommended specifications of waveform monitoring and recording device	46
Table E.1 – Physical meanings of the power flows of loads	53
Table E.2 – Physical meanings of the power flows of generators	54
Table E.3 – Physical meanings of the power flows of generators in Japan	54
Table E.4 – Physical meanings of the power flows of generators in IEEE 1547.1	54
Table E.5 – Physical meanings of the power flows of generators in EN 50549-10	54
Table E.6 – Physical meanings of the power flows of generators in AS/NZS 4777.2	55
Table I.1 – Grid support functions covered in IEC 63409 series	62

INTERNATIONAL ELECTROTECHNICAL COMMISSION

**Photovoltaic power generating systems connection with the grid -
Testing of power conversion equipment -
Part 3: Basic operations**

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) IEC draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). IEC takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, IEC had not received notice of (a) patent(s), which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at <https://patents.iec.ch>. IEC shall not be held responsible for identifying any or all such patent rights.

IEC 63409-3 has been prepared by IEC technical committee 82: Solar photovoltaic energy systems. It is an International Standard.

The text of this International Standard is based on the following documents:

Draft	Report on voting
82/2456/FDIS	82/2525/RVD

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

The language used for the development of this International Standard is English.

This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are described in greater detail at www.iec.ch/publications.

A list of all parts in the IEC 63409 series, published under the general title *Photovoltaic power generating systems connection with the grid – Testing of power conversion equipment*, can be found on the IEC website.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under webstore.iec.ch in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn, or
- revised.

INTRODUCTION

This document gives test procedures for confirming the basic operation characteristics of power conversion equipment (PCE).

Part 3 confirms basic power conversion control of PCE at steady state condition and at transient response. Figure 1 shows the relationships of the seven parts in the IEC 63409 series. Part 3 is focused on the control functions in PCE with respect to power conversion. Power flow control and grid support functions will generate active and reactive power commands according to the grid conditions. The commands are sent to power conversion control, and power conversion control will make current or voltage references, which manipulate signals for the switching devices.

It is important to confirm the basic control performance of the PCE as power conversion equipment without power flow control and grid support functions, so that additional functions such as power flow control and grid support functions can perform appropriately.

The responses of PCE against abnormal grid conditions will be covered in Part 4 (IEC 63409-4).

Power quality of the PCE output will be covered in Part 5 (IEC 63409-5).

Power flow control and grid support functions will be covered in Part 6 (IEC 63409-6).

Responses against commands through communication will be covered Part 7 (IEC 63409-7).

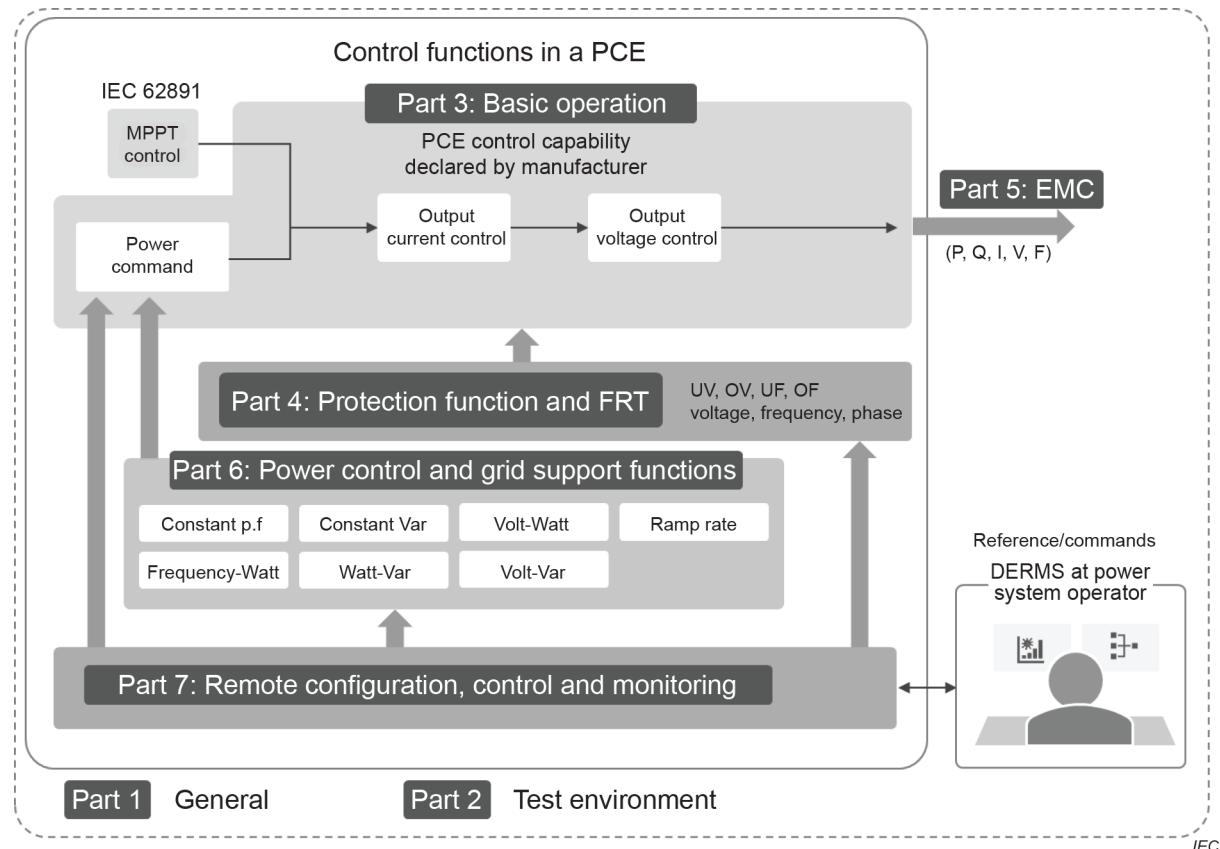


Figure 1 – Scopes of IEC 63409 series

1 Scope

This document specifies test procedures for confirming the basic operational characteristics of power conversion equipment (PCE) for use in photovoltaic (PV) power systems with or without energy storage. The basic operational characteristics are the capability of the PCE before any limitations due to internal settings are applied to the PCE to meet specific grid support functions or specific behaviours against abnormal changes.

This document covers the testing of the following items:

a) Steady state characteristics

Test procedures to confirm operable range of PCE at steady state condition are described. The operable ranges in apparent power, active power, reactive power, power factor, grid voltage and grid frequency are confirmed according to the test procedures.

b) Transient-response characteristics

Test procedures to confirm PCE's response against a change of operational condition are described.

Transient-response characteristics to be confirmed are response behaviours against:

- Active power set point change and reactive power set point change
- Grid voltage change, phase angle change, voltage unbalance and frequency change

This document only considers the changes within normal (continuous) operable ranges. Therefore, the behaviours against abnormal changes and grid support functions are out of the scope and are covered in other parts of this series.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC TS 61836, *Solar photovoltaic energy systems - Terms, definitions and symbols*

Bibliography

IEC publications

IEC 60050-103, *International Electrotechnical Vocabulary (IEV) - Part 103: Mathematics - Functions*

IEC 60050-311, *International Electrotechnical Vocabulary (IEV) - Part 300: Electrical and electronic measurements and measuring instruments - Part 311: General terms relating to measurements - Part 312: General terms relating to electrical measurements - Part 313: Types of electrical measuring instruments - Part 314: Specific terms according to the type of instrument*

IEC 60050-411, *International Electrotechnical Vocabulary (IEV) - Part 411: Rotating machinery*

IEC 61000-2-2:2002, *Electromagnetic compatibility (EMC) - Environment - Compatibility levels for low-frequency conducted disturbances and signalling in public low-voltage power supply systems*

IEC 61000-4-27:2000, *Electromagnetic compatibility (EMC) - Part 4-27: Testing and measurement techniques - Unbalance, immunity test*

IEC 61000-4-30, *Electromagnetic compatibility (EMC) - Part 4-30: Testing and measurement techniques - Power quality measurement methods*

IEC 61557-12, *Electrical safety in low voltage distribution systems up to 1 000 V AC and 1 500 V DC - Equipment for testing, measuring or monitoring of protective measures - Part 12: Power metering and monitoring devices (PMD)*

IEC 61850-7-420, *Communication networks and systems for power utility automation – Part 7-420: Basic communication structure - Distributed energy resources and distribution automation logical nodes*

IEC 61850-7-4, *Communication networks and systems for power utility automation – Part 7-4: Basic communication structure - Compatible logical node classes and data object classes*

IEC 62053-23:2020, *Electricity metering equipment - Particular requirements - Part 23: Static meters for reactive energy (classes 2 and 3)*

IEC 62109-1:2010, *Safety of power converters for use in photovoltaic power systems - Part 1: General requirements*

IEC 62116, *Utility-interconnected photovoltaic inverters - Test procedure of islanding prevention measures*

IEC 62446-1, *Photovoltaic (PV) systems - Requirements for testing, documentation and maintenance - Part 1: Grid connected systems - Documentation, commissioning tests and inspection*

IEC TS 62786-1, *Distributed energy resources connection with the grid - Part 1: General requirements*

IEC TS 62910:2020, *Utility-interconnected photovoltaic inverters - Test procedure for under voltage ride-through measurements*

IEC 60375, *Conventions concerning electric circuits*

National or regional standards

Australia and New Zealand - AS/NZS 4777.2:2020, *Grid connection of energy systems via inverters, Part 2: Inverter requirements*

Canada - CAN/CSA-C22.3 NO. 9:20, *Interconnection of distributed energy resources and electricity supply systems*

China - GB/T 33593-2017, *Technical requirements for grid connection of distributed resources*

Germany - BDEW 2008-06, *Technical guideline, generating plants connected to the medium-voltage network*

Germany - VDE-AR-N 4100:2019-04, *Technical rules for the connection and operation of customer installations to the low voltage network (TAR low voltage)*

Germany - VDE-AR-N 4105:2018-11, *Generators connected to the low-voltage distribution network - Technical requirements for the connection to and parallel operation with low-voltage distribution networks*

Germany - VDE-AR-N 4110:2023-09, *Technical requirements for the connection and operation of customer installation to the medium voltage network (TCR medium voltage)*

Germany - VDE-AR-N 4120:2018-11, *Technical requirements for the connection and operation of customer installations to the high voltage network (TCR high voltage)*

Germany - VDE-AR-N 4130:2018-1, *Technical requirements for the connection and operation of customer installations to the extra high voltage network (TAR high voltage)*

Japan - JP JESC E 0019 / JEAC 9701-2019, *Grid-interconnection Code with amendments*

United Kingdom - ENA ER G98, *Requirements for the connection of Fully Type Tested Micro-generators (up to and including 16 A per phase) in parallel with public Low Voltage Distribution Network on or after 27 April 2019*

United Kingdom - ENA ER G99, *Requirements for the connection of generation equipment in parallel with public distribution networks on or after 27 April 2019*

USA - IEEE 1547-2018, *IEEE Standard for Interconnection and Interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces*

USA - IEEE 1547.1-2020, *IEEE Standard Conformance Test Procedures for Equipment Interconnecting Distributed Energy Resources with Electric Power Systems and Associated Interfaces*

USA - IEEE Std 1547.2, *Application Guide for IEEE 1547 Standard for Interconnecting Distributed Resources with Electric Power Systems*

USA - IEEE Std 1547.3, *IEEE Guide for Monitoring, Information Exchange, and Control of Distributed Resources Interconnected with Electric Power Systems*

USA - IEEE Std 1547.4, *IEEE Guide for Design, Operation, and Integration of Distributed Resource Island Systems with Electric Power Systems*

USA - UL 1741 SB, *UL Standard for Safety Inverters, Converters, Controllers and Interconnection System Equipment for Use With Distributed Energy Resources*

CENELEC - EN 50160, *Voltage characteristics of electricity supplied by public electricity networks*

CENELEC - EN 50549-10:2022, *Requirements for generating plants to be connected in parallel with distribution networks Tests for conformity assessment of generating units*
